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Resonant Modes in Shielded Uniaxial-Anisotropic

Dielectric Rod Resonators
Yoshio Kobayashi, Senior Member, IEEE, and Tomohiro Senju

Abstract—Rigorous field analyses by the mode matching

method are presented for two types of dielectric rod resonators,

including such uniaxial-anisotropic dielectrics as sapphire,

which are placed between two parallel conducting plates (par-

allel-plates type) and in a conducting cavity (cavity-open type).

For the parallel-plates-type resonator, the cutoff conditions of

resonant modes are discussed. Resonant frequencies of some
lowest order modes for these resonators are calculated, and
mode charts are presented to design the resonators. The theory
is verified by experiments.

I. INTRODUCTION

R ECENTLY, sapphire dielectric resonators placed be-

tween two parallel high-TC superconducting films

have attracted special interest since they realize a very

high Q characteristic of over 2 x 106 below 90 K [1]. As

is well known, single crystalline sapphires have relative

perrnittivity perpendicular to the c-axis q = 9,4, and one

parallel to the c-axis ~Z = 11.6, because of their dielectric

uniaxial anisotropy. Therefore, when designing such res-
onators, we need to take into account the influence of the

anisotropic property on the resonant modes.

Analyses for uniaxial-anisotropic dielectric resonators

have been performed rigorously by Krupka [2] using the

Galerkin-Rayleigh-Ritz method, and approximately by

Tobar et al. [3]. However, the calculated results pre-

sented by them are not sufficient for resonator designs.

On the other hand, rigorous analyses for shielded iso-

tropic dielectric rod resonators have’been performed suc-

cessfully by using the mode matching methods of two

types; one is the radial mode matching method developed

by Kobayashi et al. [4], [5], and the other is the axial

mode matching method developed by Zaki et al. [6], [7].

The former method is useful to calculate the resonant

modes systematically by a relatively simple procedure. On

the other hand, for the latter method, we need a more

complicated procedure because of the requirement of con-

sidering the guided complex modes,
In this paper, rigorous field analysis by the former

method is discussed for shielded uniaxial-anisotropic di-

electric rod resonators of two types; one is placed be-
tween two parallel conducting plates (parallel-plates type)

and the other is centered in a conducting cavity (cavity-

open type). Characteristic equations for these resonators
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are derived, resonant frequencies of some lowest order

modes are calculated, and mode charts are presented to

design these resonators. The validity of the theory is con-

firmed by experiments.

II. ANALYSIS

A. Wave Equations

Fig. 1 shows two resonator structures to be analyzed in

a cylindrical coordinate system r, 6, z; one is a parallel-

plates-type resonator, where a dielectric rod is placed be-

tween two parallel, infinitely large conducting plates

shown in Fig. 1(a); and the other is a cavity-open-type

resonator, where the rod is placed symmetrically in a cy-

lindrical conducting cavity shown in Fig. l(b). The di-

electric rod is assumed to have lossless homogeneous uni-

axial-anisotropic characteristic with the c-axis of the di-

electric parallel to the z-axis. Defining q and CZas the

relative permittivity perpendicular and parallel to the
c-axis, respectively, the relative permittivity tensor [t, ] is

given by

[1

6,00
[6,]= 06,0. (1)

Ooez

The relative permeability of the dielectric is assumed to

be p, = 1, and the conductor is also assumed to be loss-

less.

Omitting a time-harmonic factor ejtit, we can write

Maxwell’s equations for a source-free case in the medium

[e,] as follows:

V X E = –jctrpOH (2)

V x H = jq[cr]E (3)

V “ ([er]E) = O (4)

V“H=O (5)

where E and H are the electric and magnetic fields, e. and

PO are the permittivity and permeability in vacuum, re-

spectively. Then (4) can be rewritten as follows:
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Fig. 1. Structures of shielded dielectric rod resonators. (a) Parallel-plates

type. (b) Cavity-open type.

Thus, we obtain

(7)

In order to systematically analyze the resonant modes

known to be hybrid in general, we derive two wave equa-

tions for z components of E and H below. At first, taking

the rotation of (2) and using (3), we obtain

V x (V x E) – k~[cr]E = O (8)

where k; = U2 ~. Uo. Using the vector formula

(V. V) E= V(V. E)– VX(VXE) (9)

and (7), equation (8) yields

‘VV)E- (1-w%)‘k’[’r]E=O
(lo)

The z component of (10) yields the following wave equa-

tion for E,:

() E, d2E
~ + ezk;Ez = O

‘2E’– l–Z az
(11)

where V2 is the Laplacian.

Similarly, taking the rotation of (3) and using (5) and

(9), we obtain

(V . V) I-l +ju~OV x ([cr]E) = O. (12)

Using (2), we rewrite the z component of the second term

of the left-hand side of (12) as follows:

{ v x ([~rl E)}, = 6,(V x E)z = ‘j@/.@,Hz. (13)

The combination of the z component of (12) and (13)

yields the following wave equation for HZ:

(14)V2HZ + ctk;Hz = O.

B. Parallel-Plates-Type Resonators

We derive a characteristic equation for the parallel-

plates-type resonator shown in Fig. l(a) below. The

quantities for homogeneous regions [1] and [11] are de-

noted by subscripts 1 and 2, respectively. In the region

[11], [c,] is given by the unit matrix. The solutionsof(11)

and (14) are given by

E,l = k~lzle.l. (kel r) cos n9 cos (lz

Hzl = k~lA~J. (k~l r) sin nd sin 13z

in the region [1] (O s r < R) and

Eti = k~B.K. (k2 r) cos

Ha = k~B~ K. (k2 r) sin

in the region [11] (r > R), where

k:l = ezk; – : f12 k;l

k;= fi2 -k;

p=~=!z; 1=0,
Ag L

noCos @z

ntl sin @z

= ctk; – 132

1,2, . . .

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

and Ae, AM, B,, and B~, which are multiplied by k: and

k; for convenience of analysis described below, are con-

stants determined from the boundary conditions. Also, n,

m, and 1 denote the mode numbers in the azimuthal, ra-

dial, and axial directions, respectively. P is the axial wave

number, & is the axial wavelength, and ho is the free-

space wavelength. J.(x) and Kn (x) are the Bessel function

of the first kind and the modified Bessel function of the

second kind, respective y. The field components except

E, and Hz are obtained by substituting (15)-(18) into the

following relations [5]:

1 aHz Ez 1 1 a2Ez
Eo=jupo~~+–~–—

m Et k. r aeaz

where km and k, are the wave numbers in the radial direc-

tion.

The continuity of the tangential components of E and

H between the regions [1] and [11] yields the following

characteristic equation for the hybrid modes:

[

J; (Ue) + K: (v) 1[J; (Um) + K;(v)

‘z Z.LJn (u.) uK.(v) u~J. (ZLJ uK.(v) 1

(24)

where u, = kel R, u~ = k~l R, and v = k2R. The primes
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on the Bessel functions refer to differentiation with re-

spect to their argument x. Equation (24) is different from

the one presented by Tobar et al. [3], in which the diver-

gence of E is assumed not to depend on z with reference

to (7).

When n = O, particularly, (24) is divided into two

groups; that is,

J~ (u~) + K~ (V)
—=0

u~Jo (u~) VK()(V)

for the Z’EO~l modes and

for the TJ40m1 modes. Also, when 1 = O, (24) yields

J; (Ue) + K; (v)
ez — . 0

u@J. (Z&) uK.(v)

for the TM.~o modes [4].

C. Cavity-Open-Type Resonators

(25)

(26)

(27)

The resonant modes for the structure shown in Fig. l(b)

are rigorously analyzed by the radial mode matching
method similar to the isotropic case. From the symmetry

of the structure, the resonant modes can be classified into

those for which the T-plane (the r-~ plane at z = O) is an

electric wall and those for which it is a magnetic wall. In

the following discussion, both types of modes are treated

together. The equations are distinguished by using { } in

which the upper and lower expressions correspond to the

electric T-plane modes and the magnetic T-plane modes,

respectively. From the symmetry of the structure, it is

sufficient to consider only the region z z O, which is di-

vided into three homogeneous regions [1], [11], and [111].

Applying the boundary conditions on the conducting sur-

face and on the T-plane to the solutions of(11) and (14),

we can expand Hz and EZ for each region as follows:

w

[1sin fl~lPz
H,l = sin nO ~~1 AmpkilpJ~ (kmlpr)

Cos I%@z

HZ2 = sin n8 ~~1 BmpkilpJn (kmIp r) Sin i%p (Z – h)

EZ2 = cos n 8 ~~1 B.PkZIPJ, (kelP r) cos fi.2p (Z – h)

EZ3 = –COS nf3 { ~ )

(28)

(29)

(30)

(31)

(32)

(33)

where

z; (h3@
K. (X)F. (X) = ‘n (x) – K: (km3qa)

% (k.s~a)
K. (X)Gn (X) = ‘n(x) – Kn (kc3~a)

1

(34)

k:3q = 6:3q — c3k: J (35)

6m3q=[:2wJ;‘=123”””
Bg3q =

{

q~/h; q=o, 1,2, ”””

))

. (36)
(2q - l)r/2h; q=l,2,3, ”””

In the above, Zn(x) is the modified Bessel function of the

first kind. A~P, BMP, C~~, A.P, B,P, and C.g are expansion

coefficients to be determined from the boundary condi-

tions for the regions [1], [11], and [111], The other electro-

magnetic field components except HZ and EZ in each re-

gion are obtained by substituting (28)-(33) into (23).

From the continuity of EO and H, at z = L, we first

obtain

-[

sin X~P ~ Xmp Cos Xmp
—— =—

B w sin Y~P L Y.P COS Y.P
.

A Cos Xmp
1

(37)
w M X.p sin X.p

—— =——
sin Y~p L Ymp COS Ymp

-[

_ _ = Ez M ‘ep Sin ‘ep~z Cos Xep
B,P E2 Cos Yep q L Ytp sin Y~p

A=

1

(38)
w ~Z sin X~p ~ZM Xep COS Xep.— .——

.52 Cos Yep et L Y~Psin Y@P

with X~p = &lpL, Y~p = (%7.PM, &p = &lPL, and Y.P

= O.ZPM. Furthermore, (Xmp, y~p) iS given aS the Pth rOOt
of the following simultaneous equations:

while (xep, Y,p) is the pth root of the following:
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where the integer p is counted in increasing order. These cients & = jAmp u&Jn (ump) ad ~ep E AeP u ~pJn (ueP)l.5]:

equations were derived from (35), (37), and (38).

From the continuity of HZ at r = R, we then obtain

‘Ampu’pJn(ump)[::(2:J; “<z<’ ‘“P[:::9)+U:;:;:P)]
,=1

m
] ‘Poj:q+:.,q]

with u~p = k~lpR and v~q = k~BqR. Multiplying

[ 1“

sin @~3qz
9 q=l,2,3, ”o”

Cos .6m3qz

on both sides of (41) and integrating from O to h with

respect to z, we obtain the following expression from the

orthogonality of trigonometric functions:

[
ii Amp U:pJn (%,) P& + > Q;’,=1 mp 1

= –C~qviqF. (v~q)h/2.

Similarly, the continuity of EZ yields

[
fi A.pu~pJ. (Ue,) R;q + > S;q

p=l
ep 1

. – Ccq v:9 G. (~eq)

“[

cq h/2; (7=0,1,2,”””

h/2; q=l,2,3,000 1

with Uep = kelPR, v,, = ktqR, and

(2; q=”

E’ =
1; qzl

where

![L sin (X~p z/L) sin &3qz
p;’ =

1
dz

o cos (X~p z /L) COS &3qZ

[“ J
Q$q= ~~sin~ (Z - h) ‘ln ‘m3qz ~z

Cos lflm3qz

L

![
1

cos (XepZ/L) COs ~esqz dz
R~q z

o sin (X.Pz/L) sin i3eBqz

!

h Y,p
S;q =

[1

Gos 19e3q z

Lcosx(z–h) dz.
sin 13C3qz

(42)

(43)

(44)

m

[(1 Czx., ,
n~~.p~ –—PP@~;Qjq

,=1
u ep et L ep )

Pe3q

2
-(

R;q + > Se
Pq )1

=0
veq e,
q=l,2,3, ”””

J; (~ep) ~ Re
+ (z P’ )1

+62:s:9 =0
uePJn (weP) e,

q=rw::::lB

[45)

(46)

In (45) and (46), the upper and lower signs correspond to

the electric T-plane modes and the magnetic T-plnne

modes, respectively. Furthermore, P&q, Q&q, Rjq, and

S~q are given by (44), while Pjq, Qjq, Ryq, and S$~ can be

obtained by interchanging e and m in (44).

For ~W and ~eP, which are not zero simultaneously in

(45) and (46), the determinant of the coefficient matrix

needs to be zero. Accordingly, this requirement yields the

following N x N square determinant as a characteristic

equation for the hybrid modes:

det [Hti] = O; i,j=l,2,3, ”””, N (47)

where the matrix elements Hu are given by

P =1,2,3,”..

Substituting (42) and (43) into the continuity conditions

of Ee and Ho to eliminate Ceq and C~q, we obtain the fol-

lowing homogeneous equations for the expansion coeffi- q=[:::::::l ’48)
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[

F; (ivmq) + J; (Z%p)

Hzq, 2P = u VO
vmqFn (Vmq) umPJn (urnP) 1

“[‘&q+2Q$”l

P,q=l,2,3, ”””. (49)

As the size of the matrix N is increased, the solutions

approach true values. In actual calculations, N is chosen

so that the solution may converge to within desired ac-
curacy. For the magnetic T-plane modes, we take N = 2q

because the TM.mO modes do not exist in this case. On the

other hand, for the electric T-plane modes, we take N =

2q + 1 consisting of q + 1 terms from (48), where the

TM.mo modes corresponding to q = O do exist, and q terms

from (49).

When n = O in (45) and (46), particularly, the matrix

elements are given by

[

FL (Vmq) + J6 (%p)

Hw =
Umq Fo (z+J ump JO (ump) 1

.
[ ‘$’ + 2 Q$’1

p,q=l,2,3, ”””

for the TEO modes and

p=l,2,3, ”””

for the TMO modes.

(50)

(51)

III. CALCULATIONS

A. Parallel-Plates-Type Resonators

For the parallel-plates-type resonator, (24)-(27) were

calculated in a similar way to the isotropic case [4]. The

results for some lowest order modes are shown in Fig. 2

as a mode chart, in which solid curves indicate the case

Ofet=ez= 10, and broken curves denote the case of ez

= 10 and Ez = 12. The TEO1~ mode is independent of EZ

because it has no EZ component. The broken curves for
the HE1 ~,, TEO1~, TMO1~, and HE21 ~modes show very good
agreement with ones calculated by Krupka [2] using the

4, 1 1 1 1 I

or I I I

o
~~ TMOIO

1 2 4 5

(DIL)23

Fig. 2. Mode chart for the parallel-plates-type resonator.

Galerkin-Rayleigh-Ritz method. The anisotropic prop-

erty affects the resonant frequencies more strongly in the

order of the EH1 11, HE1 ~~, HE211, and TMO11 modes ac-

cording to the strength of the Ez component.

The calculated curves described above indicate the res-

onances in a trapped state where the energy is confined in

and near the rod without radiation [4]. These trapped

states are cut off at particular values of (D/L)2, namely,

(D/L)2. The cutoff conditions for the anisotropic case
were derived in a similar way to the procedure performed

by Snitzer [8]. The complete derivations are given else-

where [9]. In particular, the cutoff condition for the TEoml

and TMoml modes is given by

Jo (Uc) = O (52)

where UC = kCR. Since kml = k.l = kC and k. = 27r/Ac at

the cutoff, where AC is the cutoff wavelength, the combi-

nation of (19) and (21) yields

for the TEo,nl modes and

for the TMoml modes. These results are indicated by thin

straight lines with the slope of 12/4 in the figure. On the

other hand, since (20) is expressed by 1m/L = 27r / AC at

the cutoff, we obtain the following relation:

(55)

On the mode chart, (55) is indicated by a straight line

which intersects the origin and has the slope of et 12/4. In

the isotropic case, the cutoff frequencies ~C = c/Ac for the

TEoml and TMo,n[ modes are the same, while in the an-

isotropic case, those for the TMoml modes are different
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Fig. 3. Mode chart for the cavity-open-type resonator when d/D = 1.56

and 2h/D = 1.3.

from those for the TEoml modes. The left side region of

the cutoff condition in the figure is in a leaky state, where

part of the energy leaks away in the radial direction and

radiation loss occurs. The TA4~~o modes are always in the

leaky state and are independent of e, because they have

only the EZ component; thus, we can

culated values presented in [4].

B. Cavity-Open-Type Resonators

directly use the cal-

The resonant frequencies of some lowest order modes

for the cavity-open-type resonator were calculated from

(47)-(51). We took N = 10 for the TE016 mode, N = 19

for the HE1ld mode, N = 20 for the TM016 mode, and N

= 30 for the EH118 mode, so that the resonant frequencies

may converge to within 0.01 percent. The results are

shown in Fig. 3 as a mode chart. The case of q = 6Z =

10 is indicated by solid curves, and the case of e, = 10

and ~Z = 12 by broken curves. It is found that the aniso-

tropic property of materials strongly influences the reso-

nant frequencies for the Tillola and HE1 la modes, having

the predominant E, component, and weakly influences the

ones for the TE016 and EH116 modes, having the predom-

inant HZ component. For sapphire resonators having rel-
atively low permittivit y (about 10), the TMola or EH1 M

mode becomes dominant according as the aspect ratio

(D/2L)2 is smaller or greater than 2. This is in contrast
with the case of commonly used dielectric resonators with

Cf = e, over 20, where the TEOM mode is dominant [101.
Another mode chart was calculated to investigate the

dependence of the size of the conducting cavity on the

resonant frequencies. The results ,are shown in Fig. 4.

When d/D <4, the uniaxial anisotropy considerably af-
fects the frequencies. This means that most of the energy

is stored in and near the dielectric rod. On the contrary,

when d/D > 4, the resonant frequencies are not affected

by the anisotropy, because most of the energy is stored

outside the dielectric rod.

2.0

1.5

c-l
-0
+

~ 10

w-

0.5

0.0

) ! 1 1 I I I -1

I 1 I I 1 I .-l
2 34 678

d/D 5

Fig. 4. Mode chart for the cavity-open-type resonator when D12L = 2
and d/2h = 2.

TABLE I
MEASURED VALUES OF c, AND e, FOR SAPPHIRES

.—

f. (GW
sample D (mm) L (mm)

%11 %11 “ ‘z

1 9.985 9.998 9.741 10.949 9.389 11.4’;r

2 10.002 5.002 13.551 14.261 9.399 11.553
.—

IV. EXPERIMENTS

In a way similar to that used by Krupka [2], we mlea-

sured e, and e, for two samples of sapphire (KYOCERA

Co. Ltd.) by constructing a parallel-plates-type resonator,

where the diameter of two copper plates used is 50 mm.

The q values were determined from the ~. values n[lea-

sured for the TEO1~ mode by solving (25). Then the CZval-

ues were determined from the ~. values measured for the

TMO1, mode and the q values measured above by using

(26). The measured results are summarized in Table I.

The mode chart was useful to identify the resonant modes

for different resonant frequencies.

We performed experiments for cavity-open-type reson-

ators to verify the calculations. Each of the sapphires de-

scribed above is placed in the center of a copper cavity

having d = 15.55 mm and 2h = 13.00 mm, supported by

foamed plastic having ez = 1.031. The frequency re-

sponses of the transmission-type resonators were mea-

sured using an HP network analyzer. Two semirigid ca-

bles with small loops were used to excite and detect lboth

the HZ and He components of the fields. The results are

shown in Fig. 5. The calculated ~. values are indicated on

the top of the figures. The calculated and measured valkes

of ~. and the differences A ~. are summarized in Table II.

It is found from Table II that the calculated ~. values for

three modes except the TEOIOmode are a little higher than
the measured values. This result is due to an inaccuracy

of the measured eZvalues; the measured resonant frequen-

cies of the TMom 1 modes for the parallel-plates-type re-
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EHll~ TMol~ TEol~ HE115

1
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5

6

Frequency (GHz)

(b)

Fig. 5. Measuredresultsand four identified resonantmodesof the lowest
order for the cavhy-open-typeresonator.(d = 15.55 mm, 2h = 13.00 mm,

~z = 1.031, C3= 1.) (a) D = 9.985 mm, 2-L = 9.998 mm, e, = 9.389, e,
= 11.478. (b)D = 10.002 mm, 2L = 5.002 mm, q = 9.399, E, = 11.553.

senator have been increased due to the air gaps effect at

the rod–plates interface, and then the E, values have been

estimated lower than true ones.

TABLE II

COMPARISON OF CALCULATED RESONANT FREQUENCIES WITH
MEASUREMENTS FOR Two CAVITY-OPEN-TYPE SAPPHIRE RESONATORS

WHEN d = 15.55 mm, 21r = 13.00 mm, ez = 1.031, AND C3 = 1

(a) Sample 1 (D = 9.985 mm, 2L = 9.998 mm, q = 9.389, &z= 11.478)

Resonant mcde %18 EH118 ~lla %16

f. (GHz)
7.339 8.827 9.121 9.720

calculated

f. (GHz)
7.275 8.797 9.099 9.714

measured

Afdfo (%) +0.88 +0.34 +0.24 +0.06

(b) Sample 2 (D = 10.002 mm, 2L = 5.002 mm, ~ = 9.399, ~ = 11.553)

Resonant mode EH116 wla ~olfl HJ%lls

f. (GHz)
9.841 10.664 10.704 12.153

catcufated

f. (GHz)
9.795 10.577 10.706

measured
12.138

Afdfo (%) +0.47 +0.82 -0.02 +0. 12

V. CONCLUSIONS

It was verified that the mode matching method, com-

monly used for the analysis of isotropic dielectric reson-

ators, can be applied successfully to the analysis of uni-

axial-anisotropic dielectric resonators. The characteristic

equations were derived for resonator structures of two

types; the parallel-plates and cavity-open types. The

cutoff conditions of the resonant modes for the parallel-

plates-type resonator were discussed. The mode charts

calculated from the characteristic equations are useful to
design sapphire rod resonators of these two types.
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