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Resonant Modes in Shielded Uniaxial-Anisotropic
Dielectric Rod Resonators

Yoshio Kobayashi, Senior Member, IEEE, and Tomohiro Senju

Abstract—Rigorous field analyses by the mode matching
method are presented for two types of dielectric rod resonators,
including such uniaxial-anisotropic dielectrics as sapphire,
which are placed between two parallel conducting plates (par-
allel-plates type) and in a conducting cavity (cavity-open type).
For the parallel-plates-type resonator, the cutoff conditions of
resonant modes are discussed. Resonant frequencies of some
lowest order modes for these resonators are calculated, and
mode charts are presented to design the resonators. The theory
is verified by experiments.

I. INTRODUCTION

ECENTLY, sapphire dielectric resonators placed be-

tween two parallel high-T, superconducting films
have attracted special interest since they realize a very
high @ characteristic of over 2 X 10° below 90 K [1]. As
is well known, single crystalline sapphires have relative
permittivity perpendicular to the c-axis ¢, = 9.4, and one
parallel to the c-axis ¢, = 11.6, because of their dielectric
uniaxial anisotropy. Therefore, when designing such res-
onators, we need to take into account the influence of the
anisotropic property on the resonant modes.

Analyses for uniaxial-anisotropic dielectric resonators
have been performed rigorously by Krupka [2] using the
Galerkin-Rayleigh-Ritz method, and approximately by
Tobar et al. [3]. However, the calculated results pre-
sented by them are not sufficient for resonator designs.
On the other hand, rigorous analyses for shielded iso-
tropic dielectric rod resonators have been performed suc-
cessfully by using the mode matching methods of two
types; one is the radial mode matching method developed
by Kobayashi er al. [4], [5], and the other is the axial
mode matching method developed by Zaki ef al. [6], [7].
The former method is useful to calculate the resonant
modes systematically by a relatively simple procedure. On
the other hand, for the latter method, we need a more
complicated procedure because of the requirement of con-
sidering the guided complex modes,

In this paper, rigorous field analysis by the former
method is discussed for shielded uniaxial-anisotropic di-
electric rod resonators of two types; one is placed be-
tween two parallel conducting plates (parallel-plates type)
and the other is centered in a conducting cavity (cavity-
open type). Characteristic equations for these resonators
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are derived, resonant frequencies of some lowest order
modes are calculated, and mode charts are presented to
design these resonators. The validity of the theory is con-
firmed by experiments.

II. ANALYSIS
A. Wave Equations

Fig. 1 shows two resonator structures to be analyzed in
a cylindrical coordinate system r, 6, z; one is a parallel-
plates-type resonator, where a dielectric rod is placed be-
tween two parallel, infinitely large conducting plates
shown in Fig. 1(a); and the other is a cavity-open-type
resonator, where the rod is placed symmetrically in a cy-
lindrical conducting cavity shown in Fig. 1(b). The di-
electric rod is assumed to have lossless homogeneous uni-
axial-anisotropic characteristic with the c-axis of the di-
electric parallel to the z-axis. Defining ¢, and ¢, as the
relative permittivity perpendicular and parallel to the
c-axis, respectively, the relative permittivity tensor [e,] is
given by

¢ 0 0
le,] =10 ¢ O0]. ¢))
0 0 ¢

The relative permeability of the dielectric is assumed to
be u, = 1, and the conductor is also assumed to be loss-
less.

Omitting a time-harmonic factor e/, we can write
Maxwell’s equations for a source-free case in the medium
[e,] as follows:

VX E = —jopH 2)
V X H = jweyle,1E ?3)
V- (le,]E) =0 “@
V-H=0 G)

where E and H are the electric and magnetic fields, ¢, and
po are the permittivity and permeability in vacuum, re-
spectively. Then (4) can be rewritten as follows:

3E,
P 0. (6

€;

V:(e]E)=¢V - E — e,<1 —3>
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Fig. 1. Structures of shielded dielectric rod resonators. (a) Parallel-plates
type. (b) Cavity-open type.

Thus, we obtain
1 oF
V~E=<1—3>—Z. (7
¢/ 0z
In order to systematically analyze the resonant modes
known to be hybrid in general, we derive two wave equa-

tions for z components of E and H below. At first, taking
the rotation of (2) and using (3), we obtain"

V X (V X E) — k3[¢,]E =0 ®)
where k3 = w®€ypo. Using the vector formula
(V- MYE=V(V-E)—-VX(VXE) (9
and (7), equation (8) yields

(V- V)E — <1 - 3) 7 <?—]—5£> + k3[e,]E = 0.

€ 0z
(10)

The z component of (10) yields the following wave equa-
tion for E,:

2

E

V2E, - <1 - %—) aaz; + k3, = 0
t

(11

where V? is the Laplacian.
Similarly, taking the rotation of (3) and using (5) and
(9), we obtain
(V - VYH + jwegV X ([e,]E) = 0. (12)
Using (2), we rewrite the z component of the second term
of the left-hand side of (12) as follows:
{V X (I, 1E)}; = €(V X E), = —jopee,H,. (13)
The combination of the z component of (12) and (13)
yields the following wave equation for H, :

V’H, + ¢k3H, = 0. (14)
B. Parallel-Plates-Type Resonators

We derive a characteristic equation for the parallel-
plates-type resonator shown in Fig. 1(a) below. The
quantities for homogeneous regions [I] and [II] are de-

2199

noted by subscripts 1 and 2, respectively. In the region
[11], [€,] is given by the unit matrix. The solutions of (11)
and (14) are given by .

E,y = k% A,J, (k. 7) cos nd cos Bz (15)
H, = k2, A,J,(ky; ) sin nf sin Bz (16)
in the region [I] (0 < r < R) and
E, = k3B,K,(kyr) cos nf cos 8z (17)
H, = k3B, K, (k,r) sin n sin 8z (18)
in the region [1I] ( > R), where
Ki=ekl =28 kn=cki-6 (9
t
ki =8> — kp (20)
27w
B=—=—; 1=0,1,2,--" (21)
A, L
N @)
)\0 (4

and A4,, 4,,, B,, and B,,, which are multiplied by k2 and
k,z,, for convenience of analysis described below, are con-
stants determined from the boundary conditions. Also, n,
m, and [/ denote the mode numbers in the azimuthal, ra-
dial, and axial directions, respectively. 3 is the axial wave
number, A, is the axial wavelength, and A, is the free-
space wavelength. J, (x) and K, (x) are the Bessel function
of the first kind and the modified Bessel function of the
second kind, respectively. The field components except
E, and H, are obtained by substituting (15)-(18) into the
following relations [5]:

"1 108H, e 1 &E

E = —i — % -z 2

r T TIORT U T e k2 araz
1 0H, ¢ 1 10E

E, =7 .z 2 Z
0 = Joko 7 Bl K2 T 96z
__1_32Hz+ 1 10E;
" T2 araz T2 ae
110°H, . 1 3E

"= rame i e @)

where k,, and k, are the wave numbers in the radial direc-
tion.

The continuity of the tangential components of E and
H between the regions [I] and [II] yields the following
characteristic equation for the hybrid modes:

[ Jaw) K:,(v)” T2 ) K;(v)}
Cuda @) 0K, @ | Ly ) T 0K, @)

_mF (1 1Y
k3 \uk 0P

where u, = kR, u, = k, R, and v = k, R. The primes

(24)
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on the Bessel functions refer to differentiation with re-
spect to their argument x. Equation (24) is different from
the one presented by Tobar et al. [3], in which the diver-
gence of E is assumed not to depend on z with reference
to (7).

When n = 0, particularly, (24) is divided into two
groups; that is,

Jo () Ko@) _

=0 25
o) 0Ko(®) )
for the TE,,,, modes and
Jo(ue) Ky (v)
=0 26
“ Uyt | vEo(®) @0

for the TM,,,; modes. Also, when ! = 0, (24) yields
Jn(u) K,v) _
“ud,) " vK,@)
for the TM,,,,, modes [4].

@7

C. Cavity-Open-Type Resonators

The resonant modes for the structure shown in Fig. 1(b)
are rigorously analyzed by the radial mode matching
method similar to the isotropic case. From the symmetry
of the structure, the resonant modes can be classified into
those for which the T-plane (the r-0 plane at z = 0) is an
electric wall and those for which it is a magnetic wall. In
the following discussion, both types of modes are treated
together. The equations are distinguished by using { } in
which the upper and lower expressions correspond to the
electric T-plane modes and the magnetic T-plane modes,
respectively. From the symmetry of the structure, it is
sufficient to consider only the region z = 0, which is di-
vided into three homogeneous regions [I], [II], and [III].
Applying the boundary conditions on the conducting sur-
face and on the T-plane to the solutions of (11) and (14),
we can expand H, and E, for each region as follows:

H,

zl

® sin $3,,1,2
sinnf 2 Am,,kil,,J,,(kml,,r){ ” } (28)
p=1 cos 3

mlpz

H, = sin nf Zl Bopk2pdy (i ?) S0 By @ — h) (29)
p:

> sin B,3,2
Hy = —sin nb 21 Cmqkfn3an(km3qr){ % } (30)
=

coS Bn3,2

= cos B,1,2
E, =cosnd % A, k%, J.(kayr)) " 31)
p=1 sin 3,152

E, = cos nf 21 B, k2, J, (kpp?) €08 Bop@ — h)  (32)
Jom

q§0 Ceququ Gn (ke3q V) Cos Be3q‘Z
—cos nf

(33)
q§1 Cequ?»q Gn (ke3q r) sin 6e3qz
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where
Ifll(kmﬁ)qa)
F() = L0 — —— K (x
9 = L) = gt K
In(keb’qa)
Gxy=Ix ——K,x (34)
( *) K, (kg ) 9]
kfnlp = G,k% - Bfnlp = eZk(z) - B?an
klay = Bia, — eski
€
kglp = sz% - e_zﬂglp = 62k(2) - 6321;
t
k¢233q = 333:1 — e3k§ (35)

gr/h
6m3q={ 15273’...

Qq - 1)7r/2h}; 7=

g/ h; g=0,1,2,---
BeSq = (36)
2q — 1)7r/2h; g=1,2,3,"--"

In the above, I,(x) is the modified Bessel function of the
first kind. A,,,, Byp, Cugs Aeps Bep, and C,, are expansion
coeflicients to be determined from the boundary condi-
tions for the regions [I], [II], and [III]. The other electro-
magnetic field components except H, and E, in each re-
gion are obtained by substituting (28)—(33) into (23).

From the continuity of E, and H, at z = L, we first
obtain

sin X, M Xy cOs X,

lﬁ _ sin ¥, L Y,, cos ¥, 37
App cos X, M X sin X,

" sin ) -1 Y,, cos ¥,

€, €08 X, g M X, sin X,,
% _ E; m B _e_, L Y,, sin Y, 38)
Agp e, SinX, ¢ MX,cos X,

QcosY, €L Ypsinl,

with me = ﬁm]pL, Ymp = Bmsz, Xep = BelpL? and Yep
= .2, M. Furthermore, (X,,,, ¥,,,) is given as the pth root
of the following simultaneous equations:

—X,, cot X, L
TP = 2 8, cot Yy
Xp tan X, M

(2) - Gi)

= ki(e, — &) (39)
while (X,,, Y,,) is the pth root of the following:
-X,, tan X,
{ i Pl L Y,tan Y,
X,, cot X,, &M
X 2 Y 2
ST _ () _ p2¢ —
9 < I > <M> ki(e, — €) (40)
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where the integer p is counted in increasing order. These  cients Ay, = jAy,42,J, (4y,,) and Ap= AgulJ, (ugp)15]:

equations were derived from (35), (37), and (38). o F 7
From the continuity of H, at r = R, we then obtain wpo 2 A, [ n(Ung) + n (mp) }
® . p=1 i quF n (Umq) umpJ n (ump)
, sin (X,,,2/L)
25 Aty () . O0=z=<L B,
p=1 cos (X,,,2/L) . [P}"q + A_P Q;,"q}
o ‘ mp
2, Brptinpd ) sin (Gp 2 = 1)/ M; i [ <  Xo Bo Yy ), )
- PE- rq
L<z=<h " uep L A M
* : B
$in B,342 Bag (oo  Bo o\
= -2 Cmqvfann(vmq){ " }; + 02 <qu 4 Spq>} =0
g=1 08 B,u342 “ e
O<z=<h (1) g=123, """ @3)
ith 1, = ky1,R and v,,, = ks, R. Multiplyi S 4, | L (% gn B’"”Y"‘”'"
with u,, = 'Tllp and v, = k,3,R. Multiplying np=1A'”p M—;znp 3 Ry, iA—- I; Sy
sin 83,2
> q= 1’ 27 3, v IB B
m3q m mp m
08 Byzgz t - <qu o qu>:|
. » . . vmq Amp
on both sides of (41) and integrating from O to kA with -
respect to z, we obtain the following expression from the t we i €3G, (Vo) e 4 % ge
orthogonality of trigonometric functions: ST L0, Guu) T Ay,
o0 B ,
2 Ay tt2p Ty () [P'" + -2 Q"’} Tn (i) e By (e \] _
po et ot g, + AT Ry, + € Z; Spe )| =0
= —CogVmgFr(nh /2. 42) 012 .-
Similarly, the continuity of E, yields q= { 1’ 2’ 3’ } (46)
o Be » Ly o
2 Aepung,, (uep) [qu + A—p qu] In (45) and (46), the upper and lower signs correspond to
p=1 P the electric T-plane modes and the magnetic T-plane
~C,,v qu (V) modes, respectively. Furthermore, P;,"q, Qg Rpg and

S§pq are given by (44), while P, qu, g and Sy, can be
gh/2; q=0,1,2,--" obtained by interchanging e and m in (44).

) h)2; g=1,2,3 “3) For A, and 4,,, which are not zero simultaneously in

’ O (45) and (46), the determinant of the coefficient matrix

with u,, = k,,R, v,, = k.3,R, and needs to be zero. Accordingly, this requirement yields the
5. -0 following N X N square determinant as a characteristic
€, = { S equation for the hybrid modes:
NS det[H]=0; ij=1,2,3--,N @&
where . .
where the matrix elements H;; are given by
N L (sin (X,,z/L) sin B3,z €3G (00) B,
qu dz Hy, 1-1= wé - R; +—£Se
0 ( cos (meZ / L) cos 8 m3qZ 4= 5% Vey G, (Ueq) i AeP &
h : -
Sin 3,2 I (Ugp) B,
Q’”=Ssm——(z— h) dz + ——— | R, + 6 — S,
P €S Brg2 Ugpdu ) \ © P A, )
L X B, Y,
cos (X,,z/L) cos Z 1 mp mp Lmp .
S A asia =0 |2 (TR0 12 22 53)
0 (_sin (X,,z/L) sin B,3,2 P ™
BmS < Bm
Y cos Bugz 4 g pmo 4 “mp 4 m
s¢, = S cos = (2 = ) { oo }dz. (44) i, \Tre g, Cre
L sin B.3,2 p=1,2,3,
Substituting (42) and (43) into the continuity conditions 0.1.2. ++-
of E, and Hy to eliminate C,, and C,,, we obtain the fol- = { T } (48)
lowing homogeneous equations for the expansion coeffi- 12,3,
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1 € Xep e Bep Yep e
H2q,2p—l = n [MT <‘e_jTqu i Tﬁ qu
ep ep
6e3q Bep
+ - | RS, + — S¢
Vg < M A, S”")]
" { F(Umg) I 7 Unp) }
= w
T g FaWng) Ut

m Bmp m
| Ppg t+ A_mp qu}

prg=123---. 49)

As the size of the matrix N is increased, the solutions
approach true values. In actual calculations, N is chosen
so that the solution may converge to within desired ac-
curacy. For the magnetic T-plane modes, we take N = 2g
because the TM,,,, modes do not exist in this case. On the
other hand, for the electric T-plane modes, we take N =
2q + 1 consisting of ¢ + 1 terms from (48), where the
M,,, modes corresponding to ¢ = 0 do exist, and g terms
from (49).

When n = 0 in (45) and (46), particularly, the matrix
elements are given by

_ [ Fo(Ung)
. ® vquO (vmq)

J§ () }

ump Ji 0 (ump)

“| Ppg t+ a1 qu}

mp
p,g=123, " (50)
for the TE, modes and
€3 G(,)(veq) < Bep >
Hyrny, = | — % (Re 4 —2 ge
{Z P [veq GO (veq) P Aep =
J 4 (uep) B, }
+ — R, + — 8¢
uepJO (uep) < e €2 Aep Pq>
p=1,23, -
O’ 1’ 2, PN 51
9= 1,2,3, --- (1)

for the M, modes.

III. CALCULATIONS
A. Parallel-Plates-Type Resonators

For the parallel-plates-type resonator, (24)-(27) were
calculated in a similar way to the isotropic case [4]. The
results for some lowest order modes are shown in Fig. 2
as a mode chart, in which solid curves indicate the case
of ¢ = ¢, = 10, and broken curves denote the case of ¢,
= 10 and ¢, = 12. The TE,;; mode is independent of e,
because it has no E, component. The broken curves for
the HE,yy, TEy;, TMy,,, and HE,,; modes show very good
agreement with ones calculated by Krupka [2] using the
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Fig. 2. Mode chart for the parallel-plates-type resonator.

Galerkin-Rayleigh-Ritz method. The anisotropic prop-
erty affects the resonant frequencies more strongly in the
order of the EH,,, HE,,,, HE,,;, and TMy,; modes ac-
cording to the strength of the E, component.

The calculated curves described above indicate the res-
onances in a trapped state where the energy is confined in
and near the rod without radiation [4]. These trapped
states are cut off at particular values of (D/L)*, namely,
(D/L)?. The cutoff conditions for the anisotropic case
were derived in a similar way to the procedure performed
by Snitzer [8]. The complete derivations are given else-
where [9]. In particular, the cutoff condition for the TE,,,
and TM,,,, modes is given by

Jo(u) = 0 (52)
where u, = k R. Since k,,; = k,; = k. and k, = 27w /), at
the cutoff, where A, is the cutoff wavelength, the combi-
nation of (19) and (21) yields

D\’ 12 /D\? u,\*
“ (z) =Z<Z>C+ <¥> 3
for the TE,,,; modes and
D' 2 (D\* ¢ (u\
“ <x> ‘Z<Z>ﬁ;<?> 4

for the TM,,., modes. These results are indicated by thin
straight lines with the slope of /> /4 in the figure. On the
other hand, since (20) is expressed by /w/L = 27w /X, at
the cutoff, we obtain the following relation:

D\? 12 /[D\?
o(%) =5 (2).

On the mode chart, (55) is indicated by a straight line
which intersects the origin and has the slope of ¢,/2 /4. In
the isotropic case, the cutoff frequencies . = ¢ /\, for the
TEy,; and TM,,, modes are the same, while in the an-
isotropic case, those for the TM,,, modes are different

(GR))
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Fig. 3. Mode chart for the cavity-open-type resonator when d/D = 1.56
and 22 /D = 1.3.

from those for the TE,,,; modes. The left side region of
the cutoff condition in the figure is in a leaky state, where
part of the energy leaks away in the radial direction and
radiation loss occurs. The TM,,,, modes are always in the
leaky state and are independent of ¢, because they have
only the E, component; thus, we can directly use the cal-
culated values presented in [4].

B. Cavity-Open-Type Resonators

The resonant frequencies of some lowest order modes
for the cavity-open-type resonator were calculated from
47-(51). We took N = 10 for the TEy; mode, N = 19
for the HE,; mode, N = 20 for the TM, s mode, and N
= 30 for the EH,;; mode, so that the resonant frequencies
may converge to within 0.01 percent. The results are
shown in Fig. 3 as a mode chart. The case of ¢, = ¢, =
10 is indicated by solid curves, and the case of ¢, = 10
and ¢, = 12 by broken curves. It is found that the aniso-
tropic property of materials strongly influences the reso-
nant frequencies for the TMy;; and HE,;; modes, having
the predominant E, component, and weakly influences the
ones for the TE,,; and EH,,; modes, having the predom-
inant H, component. For sapphire resonators having rel-
atively low permittivity (about 10), the TMy,; or EH,y;
mode becomes dominant according as the aspect ratio
(D /2L)* is smaller or greater than 2. This is in contrast
with the case of commonly used dielectric resonators with
€, = ¢, over 20, where the TE,;; mode is dominant [10].

Another mode chart was calculated to investigate the
dependence of the size of the conducting cavity on the
resonant frequencies. The results are shown in Fig. 4.
When d/D < 4, the uniaxial anisotropy considerably af-
fects the frequencies. This means that most of the energy
is stored in and near the dielectric rod. On the contrary,
when d /D > 4, the resonant frequencies are not affected
by the anisotropy, because most of the energy is stored
outside the dielectric rod.
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Fig. 4. Mode chart for the cavity-open-type resonator when D J2L =2
and d/2h = 2.
TABLE I
MEASURED VALUES OF €, AND ¢, FOR SAPPHIRES
Samole D fo(GH2)
amp! (mm) L (mMm) we————— £ E,
TEy; ™™gy :
1 9.985 9.998 9.741 10.949 9.389 11.478
2 10.002 5.002 13.551 14.261 9.399 11.553

IV. EXPERIMENTS

In a way similar to that used by Krupka [2], we mea-
sured ¢, and ¢, for two samples of sapphire (KYOCERA
Co. Ltd.) by constructing a parallel-plates-type resonator,
where the diameter of two copper plates used is 50 mm.
The ¢, values were determined from the f; values mea-
sured for the TE;; mode by solving (25). Then the ¢, val-
ues were determined from the f; values measured for the
TMy;, mode and the ¢, values measured above by using
(26). The measured results are summarized in Table I.
The mode chart was useful to identify the resonant modes
for different resonant frequencies.

We performed experiments for cavity-open-type reson-
ators to verify the calculations. Each of the sapphires de-
scribed above is placed in the center of a copper cavity
having d = 15.55 mm and 2k = 13.00 mm, supported by
foamed plastic baving e, = 1.031. The frequency re-
sponses of the transmission-type resonators were mea-
sured using an HP network analyzer. Two semirigid ca-
bles with small loops were used to excite and detect both
the H, and H, components of the fields. The results are
shown in Fig. 5. The calculated f; values are indicated on
the top of the figures. The calculated and measured values
of f and the differences A f; are summarized in Table II.
It is found from Table II that the calculated f; values for
three modes except the TEy,; mode are a little higher than
the measured values. This result is due to an inaccuracy
of the measured ¢, values; the measured resonant frequen-
cies of the TM,,,; modes for the parallel-plates-type re-
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TABLE II
COMPARISON OF CALCULATED RESONANT FREQUENCIES WITH
MEASUREMENTS FOR TwWO CAvITY-OPEN-TYPE SAPPHIRE RESONATORS
WHEN d = 15.55 mm, 27 = 13.00 mm, ¢, = 1.031, AND ¢; = 1

0
|

10 Measured

20

() Sample 1 (D =9.985 mm, 2L = 9.998 mm, ¢, = 9.389, £, = 11.478)
™15 TEqi5

Resonant mode EH,5 HE,5

fo (GHz)
calculated
Jo (GHz)
measured

Afolfo (%)

7.339 8.827 9.121 9.720

7.275 8.797 9.099 9.714

+0.88 +0.34 +0.24 +0.06

(b) Sample 2 (D = 10.002 mm, 2L = 5.002 mm, g, = 9.399, €, = 11.553)

Attenuation (dB)
(F8]
S

!

5 6 7 8 9 10 11
Frequency (GHz)
@
EHy15 TMp15 TEg15 HE 15
0Calculated

Measured

10

20

30

40

Attenuation (dB)

50 '

608 9 10 11 12 13 14

Frequency (GHz)
(b)

Fig. 5. Measured results and four identified resonant modes of the lowest
order for the cavity-open-type resonator. (d = 15.55 mm, 24 = 13.00 mm,
€ =1.031, e = 1.) (a) D = 9.985 mm, 2L = 9.998 mm, ¢, = 9.389, ¢,
= 11.478. (b) D = 10.002 mm, 2L = 5.002 mm, ¢, = 9.399, ¢, = 11.553.

sonator have been increased due to the air gaps effect at
the rod-plates interface, and then the ¢, values have been
estimated lower than true ones.

Resonant mode EH;5

™5 TEq5

fo (GHz)
calculated
f, (GHz)
measured

Afylfy (%)

9.841 10.664 10.704

9.795 10.577 10.706

+0.47 +0.82 -0.02

V. CONCLUSIONS

It was verified that the mode matching method, com-
monly used for the analysis of isotropic dielectric reson-
ators, can be applied successfully to the analysis of uni-
axial-anisotropic dielectric resonators. The characteristic
equations were derived for resonator structures of two
types; the parallel-plates and cavity-open types. The
cutoff conditions of the resonant modes for the parallel-
plates-type resonator were discussed. The mode charts
calculated from the characteristic equations are useful to
design sapphire rod resonators of these two types.
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